
On Succinct Arguments and

Witness Encryption from Groups

Ohad Barta1∗, Yuval Ishai1†, Rafail Ostrovsky2‡, and David J. Wu3§

1 Technion, Haifa, Israel
2 UCLA, Los Angeles, CA, USA

3 University of Virginia, Charlottesville, VA, USA

Abstract. Succinct non-interactive arguments (SNARGs) enable proofs
of NP statements with very low communication. Recently, there has been
significant work in both theory and practice on constructing SNARGs
with very short proofs. Currently, the state-of-the-art in succinctness is
due to Groth (Eurocrypt 2016) who constructed a SNARG from bilinear
maps where the proof consists of just 3 group elements.

In this work, we first construct a concretely-efficient designated-verifier
(preprocessing) SNARG with inverse polynomial soundness, where the
proof consists of just 2 group elements in a standard (generic) group. This
leads to a 50% reduction in concrete proof size compared to Groth’s con-
struction. We follow the approach of Bitansky et al. (TCC 2013) who
describe a compiler from linear PCPs to SNARGs in the preprocessing
model. Our improvement is based on a new linear PCP packing tech-
nique that allows us to construct 1-query linear PCPs which can then
be compiled into a SNARG (using ElGamal encryption over a generic
group). An appealing feature of our new SNARG is that the verifier can
precompute a statement-independent lookup table in an offline phase;
verifying proofs then only requires 2 exponentiations and a single ta-
ble lookup. This makes our new designated-verifier SNARG appealing in
settings that demand fast verification and minimal communication.

We then turn to the question of constructing arguments where the
proof consists of a single group element. Here, we first show that any
(possibly interactive) argument for a language L where the verification
algorithm is “generic” (i.e., only performs generic group operations) and
the proof consists of a single group element, implies a witness encryp-
tion scheme for L. We then show that under a yet-unproven, but highly

∗Email: ohadba@cs.technion.ac.il. Supported by ERC Project NTSC (742754).
†Email: yuvali@cs.technion.ac.il. Supported by ERC Project NTSC (742754),
NSF-BSF grant 2015782, BSF grant 2018393, and a joint Israel-India grant. Part of
this work was done while visiting the Simons Institute for the Theory of Computing.

‡Email: rafail@cs.ucla.edu. This material is based upon work supported by DARPA
under Cooperative Agreement No: HR0011-20-2-0025. Any opinions, findings and con-
clusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of DARPA or U.S. Government.

§Email: dwu4@virginia.edu. Supported by NSF CNS-1917414 and a University of
Virginia SEAS Research Innovation Award. Part of this work was done while visiting
the Simons Institute for the Theory of Computing.

plausible, hypothesis on the hardness of approximating the minimal dis-
tance of linear codes, we can construct a 2-message laconic argument for
NP where the proof consists of a single group element. Under the same
hypothesis, we obtain a witness encryption scheme for NP in the generic
group model. Along the way, we show that under a conceptually-similar
but proven hardness of approximation result, there is a 2-message laconic
argument for NP with negligible soundness error where the prover’s mes-
sage consists of just 2 group elements. In both settings, we obtain la-
conic arguments (and linear PCPs) with linear decision procedures. Our
constructions circumvent a previous lower bound by Groth on such ar-
gument systems with linear decision procedures by relying on imperfect
completeness. Namely, our constructions have vanishing but not neg-
ligible completeness error, while the lower bound of Groth implicitly
assumes negligible completeness error of the underlying argument. Our
techniques thus highlight new avenues for designing linear PCPs, suc-
cinct arguments, and witness encryption schemes.

1 Introduction

Interactive proof systems [GMR85] provide a general framework that allows a
verifier to efficiently check claims made by a (possibly malicious) prover. The
two properties we require from an interactive proof system are completeness,
which says that an honest prover should successfully convince an honest verifier
of a true statement, and soundness, which says that a malicious prover should
not be able to convince an honest verifier of a false statement, except perhaps
with small probability.

An important metric in the design of interactive proof systems is the com-
munication complexity, and specifically, the amount of communication from the
prover to the verifier. For an NP language, an interactive proof system is said to
be laconic or succinct if the total communication from the prover to the verifier
is sublinear in the size of the NP witness. In the setting of general NP languages,
non-trivial savings in the prover-to-verifier communication (beyond sending the
classic NP witness) are unlikely if we require the proof system to be statis-
tically sound (i.e., sound even against an unbounded prover) [BHZ87, GH98,
GVW01, Wee05]. If we relax the requirements and only consider proof systems
with computational soundness (known as “argument systems” [BCC88]), sig-
nificant efficiency improvements are possible. Starting from the seminal work
of Kilian [Kil92] who gave the first construction of an interactive laconic argu-
ment from probabilistically checkable proofs (PCPs) and collision-resistant hash
functions, a long sequence of works have constructed interactive laconic argu-
ments and succinct non-interactive arguments (“SNARGs” [GW11]) for general
NP languages where the communication is polylogarithmic in the size of the
classic NP witness (cf. [Mic00, Mie08, CL08, Gro10, BCCT12, Lip12, BC12,
GGPR13, BCI+13, DFGK14, Gro16, BCC+16, BCC+17, BISW17, BBB+18,
BISW18, BBHR19] and the references therein).

2

Minimizing proof size. A long sequence of works, beginning with Groth’s con-
struction of a succinct argument with a constant number of bilinear group
elements [Gro10], has sought to minimize the proof size in SNARGs for NP.
Groth’s initial construction had proofs with 42 group elements; this was later
reduced to 39 elements by Lipmaa [Lip12]. In both constructions, the prover
complexity was quadratic in the size of the NP verification circuit. Subsequently,
using a new characterization of NP based on quadratic span programs, Gen-
naro et al. [GGPR13] showed how to construct SNARGs where the proof con-
sists of just 7 group elements and where the prover computation is quasi-linear
in the size of the verification circuit. Bitansky et al. [BCI+13] introduced a more
abstract view of quadratic span programs as implying a “linear PCP,” where
a verifier can make a small number of inner product queries to a proof vector,
and described a general compiler from linear PCPs to SNARGs using a notion
called linear-only encryption. A similar compiler was implicit in [GGPR13], and
both of these works follow the high-level blueprint introduced in [IKO07, Gro10].
Danezis et al. [DFGK14] subsequently refined quadratic span programs to square
span programs and showed how to construct succinct arguments with just 4
group elements. This line of work culminated with [Gro16], which showed how
to construct succinct arguments with just 3 group elements and with very effi-
cient verification. These advances in constructing highly succinct arguments with
lightweight verification have served as the basis for a number of efficient imple-
mentations [PHGR13, BCG+13, BCG+14, BBFR15]. The work of Groth [Gro16]
raises the following natural question on the possibility of even shorter proofs:

Can we construct succinct arguments where
the proof consists of just one or two group elements?

Bitansky et al. [BCI+13] previously showed that by instantiating their com-
piler with a linear PCP built from classic PCPs (e.g., [ALM+98]) and with
the ElGamal encryption scheme [ElG84], one can obtain a designated-verifier
SNARG in which the proof consists of just two group elements. (Note that in
the designated-verifier setting, the verifier possesses a secret key that it uses to
check proofs [KMO89].) A limitation of the construction from [BCI+13] is the
inherent reliance on “classic” PCPs, where the verifier is restricted to read in-
dividual symbols of the proof instead of the inner-product queries of a linear
PCP. This greatly reduces the concrete efficiency of the resulting construction
in comparison to alternative pairing-based constructions and implementations.

This work. In this work, we develop new techniques for constructing designated-
verifier SNARGs1 (and laconic arguments) where the proof size consists of just
two group elements. In particular, we provide the following new constructions:

– Concretely-efficient SNARGs with 2 group elements: We introduce a
new “packing” technique for constructing 1-query linear PCPs from k-query

1As we discuss in greater detail in Section 1.1, our constructions naturally extend via
standard techniques to provide zero-knowledge and arguments of knowledge (namely,
they are “zkSNARKs”). For simplicity of exposition, we just focus on SNARGs here.

3

linear PCPs. We then apply the compiler from [BCI+13], in conjunction
with ElGamal encryption,2 to obtain a designated-verifier SNARG where
the proofs consist of two group elements (in a pairing-free group). Compared
to the pairing-based SNARGs of [Gro16], our arguments are half as long (64
bytes vs. 127 bytes), and moreover, with a precomputed verification table,
the verification complexity of our SNARG requires only 2 group exponen-
tiations (and 2 multiplications), which is faster than that of [Gro16], which
requires 3 pairing operations and multiple exponentiations/multiplications.
Compared to [BCI+13], our SNARGs are based on linear PCPs rather than
classical PCPs, so they also enjoy concretely-efficient prover complexities for
small circuits. At the same time, compared to [Gro16], our constructions are
in the designated-verifier setting, have a quadratic-size CRS (as opposed to
a linear-size CRS), and provide inverse polynomial soundness (as opposed to
negligible soundness). However, the fast verification time and shorter proof
size make our construction naturally suited for a number of scenarios (see
Section 1.1).

– Laconic arguments with 2 group elements and negligible sound-
ness: The SNARGs obtained by combining a 1-query linear PCP in con-
junction with ElGamal encryption have inverse polynomial soundness error.
This limitation is due to two factors: (1) the linear PCP verification proce-
dure is non-linear in the responses (for both the original [BCI+13] proposal
based on standard PCPs as well as the linear PCPs obtained via our packing
transformation); and (2) decryption in the (additively homomorphic variant
of) ElGamal encryption requires computing a discrete log. If however we can
construct a 1-query linear PCP with negligible soundness error and where
the decision procedure is linear, then we can apply the [BCI+13] compiler
(with ElGamal) to obtain a 2-element SNARG with negligible soundness
error. On the one hand, [Gro16] previously showed a lower bound that such
a linear PCP cannot exist. However, this previous lower bound only applies
if the underlying linear PCP has sufficiently small completeness error (see
the full version of this paper). In this work, by relying on hardness of ap-
proximation for problems related to linear codes, we obtain a 1-query linear
PCP with a linear decision procedure, negligible soundness error, and o(1)
completeness error. The linear PCP we obtain has the property that the
verifier’s queries depend on the statement, and as such, we do not obtain a
SNARG via the [BCI+13] compiler. Instead, we obtain the first laconic argu-
ment for NP where the prover’s message consists of just 2 group elements and
has negligible soundness error (either unconditionally in the generic group
model or assuming linear targeted malleability of ElGamal).

– Laconic arguments with 1 group element:We then turn to the question
of whether we can further reduce the communication complexity. Here, under
a yet-unproven, but highly plausible, hypothesis on the hardness of approx-

2Specifically, we rely on the assumption that the ElGamal encryption scheme satisfies
linear targeted malleability [BSW12, BCI+13]. We show in the full version of this
paper that this holds in the standard generic group model [Nec94, Sho97].

4

imating the minimal distance of linear codes (Hypothesis 5.2), we construct
a 2-message laconic argument for NP where the prover’s message consists
of just a single group element. We note that while there is a linear PCP
associated with this language, our 1-element laconic argument construction
does not follow the [BCI+13] compiler, and it is not clear how to leverage
the [BCI+13] compiler to obtain an argument system where the proof is a
single group element. Instead, we give a direct construction of a 1-element
laconic argument that is provably secure in the generic group model.

We summarize our main new constructions of SNARGs and laconic arguments
in Table 1 and also compare against existing results.

From laconic arguments to witness encryption. Several works [FNV17, BISW18,
BDRV18] have studied the connection between laconic arguments and different
types of encryption schemes. Notably, Faonio et al. [FNV17] show that any
(even non-laconic) argument of knowledge for a language L where the verifier
can predict in advance the prover’s message implies an extractable witness en-
cryption [GGSW13] scheme for L. As noted in [FNV17], their construction also
shows an equivalence between predictable arguments (without knowledge) and
(non-extractable) witness encryption.

Boneh et al. [BISW18] subsequently showed that any 1-bit argument system
is predictable for languages that are hard on average. In this work, we show
that a conceptually-similar result holds for argument systems where the proof
consists of a single group element. In particular, we show that any such argument
system that has negligible soundness error, and where the verification algorithm
can be implemented by a “generic” algorithm (i.e., it only performs generic
group operations on the proof), must also be predictable. By [FNV17], such an
argument system for a language L implies a witness encryption scheme for L.

As noted above, if our hypothesis on the hardness of approximation for the
minimal distance of linear codes holds, then we obtain a laconic argument for
NP with negligible soundness error and where the proof consists of a single
group element in the generic group model. Appealing now to the results above,
this implies a witness encryption scheme for NP in the generic group model.
We stress that, in the generic group model, this result does not rely on any
cryptographic assumptions; it only relies on a plausible hardness of approxima-
tion result that may be unconditionally proved in the future. Indeed, there are
no known barriers for strengthening the current hardness results to this more
demanding parameter regime [Kho20]. Existing constructions of witness encryp-
tion all rely on conjectures related to indistinguishability obfuscation [GGH+13],
multilinear maps [GGSW13, GLW14, CVW18], or new and yet unexplored alge-
braic structures [BIJ+20]; thus, a construction in the generic group model would
be considered a major development in this area.

Another intriguing implication of this result is that it effectively rules out neg-
ative results for constructing witness encryption unconditionally in the generic
group model. Such negative results (or barriers) are not only known for powerful
primitives such as indistinguishability obfuscation [MMN+16a, MMN+16b], but

5

Group Number of Completeness Soundness Proof Verifier PCP vs.
Type Elements Error Error Type Time LPCP

[Gro16] bilinear 2G1, 1G2 0 negl SNARG O(1) LPCP

[BCI+13] linear 8 0 1/poly dvSNARG Oε(s) LPCP

[BCI+13] linear 2 0 1/poly dvSNARG Oε(1) PCP

Cor. 3.6 linear 2 0 1/poly dvSNARG Oε(s) LPCP

Cor. 3.7 linear 2 negl 1/poly dvSNARG Oε(
√
s) LPCP

Cor. 3.8 linear 2 negl 1/poly dvSNARG Oε(1)
∗ LPCP

Sec. 4 linear 2 o(1) negl LA O(1) PCP

Sec. 5† linear 1 o(1) negl LA O(1) PCP

∗Using reusable statement-independent prepossessing with Oε(
√
s) bits of storage.

†This is a conditional result that relies on a plausible (but yet unproven) hypothesis
about hardness of approximation of minimal distance of codes (Hypothesis 5.2).
Table 1. Comparison of our group-based arguments to previous related results.
In the “Proof Type” column, SNARG and dvSNARG refer to publicly-verifiable and
designated-verifier SNARGs, respectively, and LA refers to 2-message laconic arguments
where the verifier’s initial message depends on the statement being proved. Verifier time
counts group operations as a function of the size s of the classic NP verifier, ignoring
polylogarithmic factors, and excluding quasilinear-time preprocessing of the input. An
ε-subscript treats the soundness error ε as constant. In the last column, LPCP refers
to proof systems obtained from any linear PCP whereas PCP refers to proof systems
that are based on classical PCPs. The latter do not enjoy reusable soundness and have
a very high concrete cost.

also for conceptually-simpler primitives such as identity-based encryption [PRV12].
Note that even though identity-based encryption can be built from witness en-
cryption for NP (together with a unique signature scheme) [GGSW13], the re-
sulting construction makes non-black-box use of the group. Thus, a construction
of witness encryption in the generic group model does not conflict with existing
lower bounds. Indeed, an impossibility result for constructing witness encryption
in the generic group model would falsify our hypothesis.

1.1 Concretely-Efficient SNARGs with 2 Group Elements

In this section, we provide an overview of our concretely-efficient SNARGs where
the proof consists of 2 group elements. Our starting point in this work is the com-
piler from [BCI+13] (also implicit in [GGPR13]) that compiles a linear PCP into
a SNARG in the preprocessing model using a “linear-only” encryption scheme
(i.e., an additively-homomorphic encryption scheme that only supports affine
operations on ciphertexts).3 Here, the preprocessing model refers to a SNARG

3Technically, a weaker property called linear targeted malleability [BSW12] suffices for
a basic version of the compiler. For ease of exposition, we present everything here using

6

where the running time of the setup algorithm is allowed to depend polynomi-
ally in the size of the classic NP verifier. We begin with a brief overview of this
compiler.

Linear PCPs. A linear PCP for an NP language L over a finite field F is defined
by a linear oracle π : Fℓ → F. On a query q ∈ F

ℓ, the linear PCP oracle responds
with the inner product qTπ. More generally, we can view the linear PCP queries
as the columns of a query matrix Q ∈ F

ℓ×k and the oracle’s operation as com-
puting QTπ. To verify a proof of a statement x, the verifier submits a query
matrix Q to the oracle and receives back a set of responses QTπ. In this case, k
denotes the number of linear PCP queries the verifier makes. For the language of
Boolean circuit satisfiability, there exist efficient 3-query linear PCPs based on
the quadratic span programs of [GGPR13] with query length ℓ = O(s), where
s is the size of the Boolean circuit. We can also construct 2-query linear PCPs
based on the Walsh-Hadamard code where ℓ = O(s2). This improves the 3-query
construction from [ALM+98, IKO07].

The Bitansky et al. compiler. The Bitansky et al. [BCI+13] compiler takes any
linear PCP and a linear-only encryption scheme and outputs a preprocessing
SNARG. If the linear PCP satisfies additional properties such as zero-knowledge
or knowledge soundness, then the resulting SNARG also inherits those properties
(i.e., we can obtain a “zkSNARK”). The idea behind the [BCI+13] compiler is the
following: first, they compile a linear PCP into a two-message linear interactive
proof (LIP) by introducing an additional consistency check. In this model, the
prover is allowed to compute any affine function of the verifier’s queries (the
linear PCP model is more constrained in the sense that the prover has to apply
the same linear function to each of the verifier’s queries). To go from a LIP to
a preprocessing SNARG, [BCI+13] has the verifier encrypt its queries using a
linear-only encryption scheme and publish the ciphertexts as part of the common
reference string (CRS). To construct a proof, the prover takes its statement
and witness, computes the linear function π, and homomorphically evaluates π
on the encrypted queries (this is possible since the prover’s strategy is linear).
The proof is the encrypted set of responses. In the designated-verifier model,
the verifier decrypts the responses and applies the standard LIP verification
procedure (if the verifier’s decision procedure is quadratic, a pairing can be
used to perform the verification check “in the exponent,” yielding a publicly-
verifiable SNARG). Overall, the [BCI+13] compiler takes any k-query linear
PCP and compiles it into a preprocessing SNARG where the proofs consist of
(k + 1) ciphertexts of the underlying linear-only encryption scheme. Under the
assumption that the classic ElGamal encryption scheme [ElG84] is linear-only
(when the message is encrypted in the exponent), this framework can be used to
obtain a SNARG where the proof size consists of (k + 1) ElGamal ciphertexts,
or equivalently, 2(k + 1) group elements.

the concept of linear-only encryption. We formally define linear targeted malleability
in the full version of this paper.

7

1-query linear PCPs. First, we note that any 1-query linear PCP is itself a
2-message linear interactive proof, and hence, can be directly compiled into a
preprocessing SNARG via the [BCI+13] compiler where the proof consists of
just a single ciphertext (i.e., 2 group elements in the case of ElGamal). However,
as noted above, efficient instantiations of linear PCPs based on the Hadamard
PCP [ALM+98, IKO07], quadratic span programs [GGPR13] or square span
programs [DFGK14, Gro16] all require at least 2 queries, and thus, cannot be
directly compiled into a preprocessing SNARG with 2 group elements. If we start
instead from a traditional PCP, then [BCI+13] shows how to construct a 1-query
linear PCP, which in conjunction with ElGamal encryption, yields a SNARG
with 2-group elements (and inverse polynomial soundness). However, the use of
traditional PCPs in this construction incurs a high concrete cost, and as a result,
the concrete efficiency of the resulting SNARG is not competitive with existing
pairing-based constructions based on efficient linear PCPs. Furthermore, the low
entropy of the queries in the PCP-based construction from [BCI+13] prevents
the scheme from achieving reusable soundness.4 In this work, we introduce a
new approach to constructing 1-query linear PCPs without relying on traditional
PCPs. The resulting 1-query linear PCP has reusable soundness.

Linear PCP packing. Our first result in this work is a method to pack a k-query
linear PCP into a 1-query linear PCP. Our packing construction is most naturally
viewed by considering a linear PCP over the integers.5 Namely, consider a linear
PCP where both the query matrix Q ∈ Z

ℓ×k and the proof π ∈ Z
ℓ consist of

vectors over the integers. Clearly, any linear PCP over a finite field Fp yields a
linear PCP over the integers Z. We now say that a linear PCP is B-bounded if
for an honestly-generated query matrix Q ∈ Z

ℓ×k and proof vector π ∈ Z
ℓ, it

follows that ‖QTπ‖∞ < B (i.e., the magnitude of every response is less than B).
Let q1, . . . ,qk ∈ Z

ℓ be the individual queries (i.e., the columns of Q). Consider
the vector qpacked =

∑
i∈[k] B

i−1qi ∈ Z
ℓ. Then,

a = qT
packedπ =

∑

i∈[k]

Bi−1qT
i π ∈ Z.

If |qT
i π| < B, then a represents an integer in base B where the ith digit is the

ith response qT
i π. Thus, by making a single query qpacked (with much larger

coefficients), the verifier is able to decode all k responses and implement the
verification procedure for the underlying linear PCP. As described, the above
approach is not sound: namely, an adversary can choose a malicious proof vector
π such that QTπ is not B-bounded: then, the tuple of responses decoded using
the above procedure would yield a tuple that is not consistent with applying
a single consistent linear strategy to all of the query vectors. We solve this

4Indeed, by flipping one bit of an honestly-generated PCP, a malicious prover can
mount a selective failure attack that makes the verifier reject with high probability if
this bit is being queried.

5While we present the general ideas using linear PCPs over the integers, the construc-
tion in Section 3 embeds the integer operations over a large finite field Fp.

8

problem by randomizing the query-packing procedure. Namely, instead of using
a fixed scaling factor B, the verifier sets r1 = 1 and samples r2, . . . , rk from a
sufficiently-large interval and computes the packed query vector as qpacked =∑

i∈[k] qi

∏
j≤i rj . We can now argue that over the verifier’s randomness, any

adversarial strategy that exceeds the bound will cause the verifier to reject with
high probability. We give the construction and analysis in Section 3.

We have now shown how to pack a k-query linear PCP over the integers to
obtain a 1-query linear PCP over the integers. To apply the [BCI+13] compiler,
we require a linear PCP over a finite field F. Here, we note that we can directly
embed the operations over the integers into a sufficiently large finite field (e.g.,
if Bpacked is a bound on qT

packedπ, it suffices to work over a field Fp where p >
2Bpacked). If we start with a linear PCP over Fp and desire a packed linear PCP
over the same field Fp, then the linear PCP responses should be small.6 We refer
to the resulting linear PCP as a “bounded” linear PCP over Fp. The Hadamard
linear PCP has this property, so using our basic query-packing transformation,
we obtain a 1-query bounded linear PCP over Fp with query length ℓ = O(s2),
where s is the size of the NP verification circuit. A natural question is whether
we can obtain a 1-query linear PCP with query length O(s) starting from the
quadratic span programs of [GGPR13]. As we explain in the full version of
this paper, we are not able to leverage our packing transformation because the
queries in those constructions have large coefficients, and thus, do not seem
directly amenable to our packing approach.

Concretely-efficient 2-element SNARGs. Starting from our 1-query linear PCP
above, we directly invoke the [BCI+13] compiler with ElGamal encryption to
obtain a designated-verifier SNARG in the preprocessing model where the proof
consists of 2 group elements. One caveat with ElGamal is that the scheme en-
codes the message in the exponent (i.e., the decryption algorithm recovers ga

rather than a). In the context of the [BCI+13] compiler, this means the linear
PCP response is in the exponent, and the verifier has to solve discrete log in order
to verify the proofs; if the size of the response is B-bounded, this can be done in
time Õ(

√
B) using Pollard’s kangaroo algorithm [Pol78]. For this to be efficient,

we thus require that the responses are in a polynomial-size interval. Of course,
this means that the soundness achievable using the ElGamal instantiation will
be inverse polynomial in the security parameter (rather than negligible). This is
because there are now only polynomially-many possible values that causes the
verifier to accept, so a malicious prover can guess an accepting value with 1/poly
probability. This yields a trade-off between the soundness error ε and the veri-
fier’s time complexity (namely, smaller soundness error means that the responses
have to be drawn from a larger interval, which increases the running time of the
discrete log algorithm). Thus, when compiling linear PCPs to SNARGs using
ElGamal, it is natural to consider bounded linear PCPs, which provide a direct
trade-off between soundness error and the bound (see Corollary 3.4).

6If the packing transformation requires the use of a larger field than that of the under-
lying linear PCP, this can negate the benefit of the packing.

9

The bound on our 1-query linear PCP based on the Hadamard construction
scales with O(s4), which means the resulting ElGamal-based SNARG will have
verification complexity that scales quadratically with the circuit size. This is both
undesirable and impractical for real scenarios. However, by taking advantage
of the structure of the Hadamard linear PCP, we can reduce the verification
complexity to Õ(

√
s/ε) if we allow for a negligible completeness error (as opposed

to perfect completeness). The high-level idea here is that in the Hadamard linear
PCP, one of the (unpacked) query responses is small and lies in an interval of

size Õ(
√
s/ε) with overwhelming probability. This means that instead of having

the verifier solve the discrete log to obtain the full linear PCP response, the
verifier can instead check whether the decrypted response corresponds to one of
the (polynomially-many) accepting values of the Hadamard linear PCP. Thus,
we obtain a designated-verifier SNARG with 1/poly soundness where the proof

consists of exactly 2 group elements and the verifier runs in time Õ(
√
s/ε). We

provide the details in Section 3.2.

Preprocessing to achieve constant running time. Our approach for reducing the
verification time in the ElGamal-based SNARG described above relies on there
only being a small number of accepting values (that depend on the statement
and the verifier’s secret key). In Section 3.2, we show that at setup time, the
verifier can perform a statement-independent preprocessing step (which only de-
pends on the verifier’s secret verification state) and prepare a lookup table of

size Õ(
√
s/ε). With this lookup table, the verification procedure reduces to per-

forming 2 exponentiations and 2 group multiplications, followed by a single table
lookup. This yields a much faster verification procedure compared to even the
SNARG from [Gro16], which requires computing 3 pairing relations (in addition
to multiple exponentiations and group multiplications). In this model, we obtain
SNARGs that are both 50% shorter than those from [Gro16] (64 bytes for our
construction vs. 127 bytes for [Gro16, SCI20]) and significantly faster to ver-
ify. Based on timings provided in libsnark [SCI20], the verifier’s running time
in [Gro16] is 1.2ms, while based on our estimates, two group exponentiations and
two multiplications would take 0.1ms, which is over 10x faster (see Section 3.3
for details on our performance estimates). This makes our designated-verifier
SNARGs well-suited for environments that demand very succinct proofs and
low-latency or low-energy verification.

Concrete efficiency estimates. In Table 2, we provide estimates on the size of
the CRS, the prover complexity, and the verification complexity. With prepro-
cessing, the primary cost for the verifier is the storage of the lookup table and
without preprocessing, the primary cost is the verification time. Here, we ap-
ply the additional (standard) transformation to obtain a zkSNARK (described
in Section 3.2 and Remark 3.9). We describe our methodology for computing
these estimates in Section 3.3.

The main appeal of our new designated-verifier zkSNARKs is that with pre-
processing, it has extremely lightweight verification. The proofs consist of just
two group elements and with a modestly-sized lookup table (e.g., for circuits

10

with over 15,000 wires and soundness 1/128, a lookup table of size just over
20 MB suffices). Our schemes are well suited in scenarios where the verifier has
a modest amount of memory, but is otherwise low energy or computationally
constrained. They are also well-suited in settings where the verifier might be
receiving and authenticating requests from a large number of provers.

One appealing application is to combine the zkSNARK with a one-way func-
tion to construct an identification scheme. Here, a user’s secret key is a random
element in the domain of a one-way function and the public key is its image un-
der the one-way function. To authenticate, the user would provide a zkSNARK
proving knowledge of their secret key (i.e., the pre-image under the one-way
function) associated with their public key. One way to instantiate the required
one-way function is to use Goldreich’s simple one-way function based on ex-
pander graphs [Gol00], which can be computed by a Boolean circuit with just
1200 gates [BIJ+20] (or 1500 wires). In this case, the CRS size is around 34 MB
and the prover’s computation would take just a few seconds of computation.
With a moderate soundness level of 1/128, the verifier only needs to maintain a
table with just over 6 MB of storage. If the bottleneck in the system is sending
proofs and authenticating credentials, then our construction offers a compelling
solution. Moreover, the expressive nature of zkSNARKs lends itself naturally
towards implementing more complex authentication policies (e.g., the user’s cre-
dential is valid and moreover, satisfies some simple Boolean predicate).

While our construction achieves a lower level of soundness compared to
pairing-based alternatives, scenarios where there are severe out-of-band conse-
quences for getting caught cheating (even once) can provide strong incentives
for honest behavior. This is conceptually similar to the notion of covert secu-
rity in multiparty computation [CO99, AL07]. Similarly, while our constructions
do not provide perfect zero-knowledge, the effects of any potential leakage can
be mitigated (in the above setting with an identification scheme) by using a
leakage-resilient one-way function. Moreover, in the setting of short-lived tokens
or credentials, the user can simply refresh their credential after a certain number
of requests (based on the zero-knowledge parameter of the system).

More broadly, we believe that our new preprocessing zkSNARKs are appeal-
ing in terms of proof size and verifier complexity. It is interesting to further
optimize our methods to support more complex circuits. In the full version of
this paper, we describe one approach based on constructing specially-designed
circuits that are “Hadamard-friendly,” which can then be efficiently-checked us-
ing a linear PCP (with small amortized query size), and correspondingly, enable
a more concretely efficient zkSNARK.

1.2 From Hardness of Approximation to Witness Encryption

A limitation of the SNARG constructions based on instantiating the [BCI+13]
compiler with ElGamal is that they only provide 1/poly soundness. Part of this
stems from the inherent challenge that recovering the linear PCP responses
from an ElGamal ciphertext requires computing discrete log, which restricts

11

Circuit CRS Prover Soundness Verifier Space Verifier Time
Size Size Time Error (with Preproc.) (without Preproc.)

210 16MB
262K 2−1 58KB 23K(0.33s)

(3.6s) 2−7 5.3MB 1.5M (21.28s)
2−14 923.4MB 194M (45m21s)

212 256MB
4.2M 2−1 126KB 47K (0.66s)

(58s) 2−7 11.2MB 3M (42.57s)
2−14 1.9GB 389M (1h30m)

214 4GB
67M 2−1 270KB 95K (1.33s)

(15m40s) 2−7 23.5MB 6M (1m25s)
2−14 3.9GB 778M (3h1m)

Table 2. Concrete efficiency estimates for our designated-verifier zkSNARK based on
ElGamal (see Section 3.2 and Remark 3.9 for details on how to extend the basic SNARG
to a zkSNARK). For different circuits sizes (number of wires in a Boolean circuits with
fan-in 2 gates) and soundness levels, we measure the CRS size (in group elements),
the prover complexity (in number of group operations), and the verifier cost (with pre-
processing, this corresponds to the size of the lookup table and without preprocessing,
this corresponds to the number of group operations needed for online verification). The
proof size for all of the parameter settings consists of just two group elements (64 bytes),
and with preprocessing, the verification cost is just 2 exponentiations (and 2 multipli-
cations). We set the completeness error to 2−40 and the zero-knowledge parameter to
achieve 0.1-statistical zero knowledge. Without zero-knowledge, we can reduce the size
of the verifier’s lookup table and the verification time by 8x. For the concrete timing
estimates, we base them on measurements taken using the libsodium implementation
of the Curve25519 elliptic curve [Ber06] (see Section 3.3 for further details).

us to linear PCPs whose responses lie in a polynomial-size set (and correspond-
ingly, yields SNARGs with inverse polynomial soundness error). However, Bi-
tansky et al. [BCI+13] point out that if we had a linear PCP with a linear
decision procedure and if we apply the compiler using ElGamal encryption, the
verifier no longer needs to decrypt the responses. Instead, it can simply check the
verification procedure “in the exponent.” This provides a general template for
constructing a succinct argument based on ElGamal that can achieve negligible
soundness error. While Bitansky et al. motivate the search for a linear PCP with
a linear decision procedure, they do not suggest a candidate.

1-query linear PCP with negligible soundness from hardness of approximation.
In this work, we introduce a new approach for constructing linear PCPs based
on the hardness of approximating problems related to decoding linear codes.
Specifically, we construct a 1-query linear PCP with a linear decision proce-
dure and negligible soundness error. Our construction affirmatively answers the
above question posed by Bitansky et al. on whether there exists a linear inter-
active proof with a linear decision procedure. We note, however, that the linear
PCP we construct is instance-dependent (i.e., the verifier’s query depends on

12

the statement being verified). As such, applying the [BCI+13] compiler yields
a 2-message laconic argument where the prover’s message consists of 2 group
elements.

Previously, Groth [Gro16] ruled out the possibility of 2-message linear inter-
active proofs with a linear decision procedure for languages that are hard on
average. Implicit in his lower bound is the assumption that the underlying proof
satisfies perfect completeness (or more generally, has sufficiently small complete-
ness error). Our 1-query linear PCP construction has a small, but noticeable,
o(1) completeness error which avoids this lower bound. We discuss this in greater
detail in the full version of this paper.

Our linear PCP construction relies on the hardness of approximation for the
gap minimum weight solution problem (GapMWSP) [KPV12]. At a high level, a
problem instance for GapMWSPβ is a triple (A,b, d) where A ∈ F

ℓ×n, b ∈ F
ℓ,

d ∈ N, and F is a finite field. The goal is to decide whether there exists a solution
x ∈ F

n with Hamming weight at most d such that Ax = b, or, alternatively,
if all solutions x ∈ F

n to the linear system Ax = b have Hamming weight at
least β ·d, where β = polylog(n) is the approximation factor. While this problem
is traditionally formulated over the binary field F2, we show that the same NP-
hardness reduction (from the GapLabelCover problem [Raz95]) extends to general
finite fields.

We can construct a linear PCP for the GapMWSP problem in a straight-
forward manner (this in turn yields a linear PCP for NP by first applying a
Karp-Levin reduction to GapMWSP). The linear PCP query for an instance

(A,b, d) consists of a random vector r
r← F

ℓ and a sparse vector e ∈ F
n where

each component of e is either uniform over F or 0. The query is the vector
qT = rTA + eT ∈ F

n. The proof for an instance (A,b, d) is a vector π ∈ F
n

where Aπ = b and π has small Hamming weight wt(π) ≤ d. Finally, given
a response a ∈ F, the verifier simply checks whether a = rTb. Suppose that
Aπ = b. Then, qTπ = rTAπ+eTπ = rTb+eTπ. Completeness follows as long
as eTπ = 0. This happens with 1−o(1) probability since both e and π are sparse
(i.e., eTπ is nonzero only if both e and π have a nonzero component in the same
coordinate, which happens with small, but noticeable, probability over the ran-
domness of e). Conversely, for a no instance, all solutions to the linear system
Ax = b have Hamming weight at least βd. In this case, for any proof vector π,
either Aπ 6= b (in which case, the verifier rejects except with probability 1/|F|
over the randomness of r) or if Aπ = b, then π has large Hamming weight and
eTπ will be nonzero with overwhelming probability over the choice of e. Hence,
we obtain an instance-dependent 1-query linear PCP with a linear decision pro-
cedure from the GapMWSP problem, and correspondingly, a 2-message laconic
argument with negligible soundness and where the proof size consist of just 2
group elements by invoking the [BCI+13] compiler with ElGamal encryption.
We provide the full description and analysis in Section 4.

From laconic arguments to witness encryption. Given a laconic argument where
the proof consists of just two group elements, a natural question to ask is whether
we can have an argument that is even shorter: namely, a laconic argument with

13

just a single group element. From a conceptual perspective, this question has a
similar flavor to the notion of a “1-bit SNARG” introduced in [BISW18]. There,
they showed that a 1-bit SNARG for a hard language is in fact “predictable” (i.e.,
the verifier can predict the value of an accepting proof), and by leveraging the
result from [FNV17], implies a witness encryption7 scheme for the underlying
language. As it turns out, laconic arguments where the prover’s message is a
single group element and where the verification algorithm only consists of generic
group operations are similarly powerful. As we show in the full version of this
paper, any 1-element laconic argument that has negligible soundness error and a
“generic” verification algorithm (i.e., it only performs algebraic operations over
group elements) implies witness encryption for the underlying language. This
means that improving our 2-element laconic argument to a 1-element laconic
argument provides a promising new path towards realizing witness encryption
from more traditional and well-understood cryptographic assumptions.

1-element laconic argument from hardness of approximation. It is not clear how
to leverage our 1-query linear PCP from the GapMWSP problem to obtain a
laconic argument where the proof consists of just a single group element. In-
deed, any application of the [BCI+13] compiler with ElGamal would yield an
argument system where the proof consists of at least 2 group elements (since
the proof will contain at least one ElGamal ciphertext). However, we show that
assuming a conceptually-similar, but yet-unproven hypothesis on the hardness
of approximating the minimal distance of linear codes, we can leverage similar
ideas used to construct our linear PCP from GapMWSP to directly construct a 1-
element laconic argument with negligible soundness in the generic group model.
The resulting argument is predictable in the sense of [FNV17] (even without
applying our generic transformation above), and thus, implies a witness encryp-
tion scheme for NP in the generic group model. While the hypothesis we rely on
is unproven, there are no known barriers for extending the current hardness of
approximation results for the minimal distance problem to the more challenging
parameter regime needed for our construction [Kho20].

Our 1-element laconic argument relies on the hardness of approximating the
minimal distance of a linear code (GapMDP). For an approximation factor β > 0,
a GapMDPβ instance (A, d) consists of a matrix A (over a finite field F) and
a distance d ∈ N and the problem is to decide whether the minimum distance
(under the Hamming metric) of the code generated by A is less than d or greater
than β ·d. Equivalently, we can formulate the problem as distinguishing between
the following two possibilities with respect to the parity-check matrix H ∈ F

ℓ×k

of the code generated by A.

7In a witness encryption scheme [GGSW13], the prover can encrypt a message to an
NP statement x such that anyone with knowledge of the witness w is able to decrypt
and recover the message. This is a very powerful notion of encryption whose only in-
stantiations rely on conjectures related to indistinguishability obfuscation [GGH+13],
multilinear maps [GGSW13, GLW14, CVW18], or new and relatively unexplored al-
gebraic structures [BIJ+20].

14

– There exists a nonzero vector 0 6= v ∈ F
ℓ
p with Hamming weight at most d

such that Hv = 0.
– For all nonzero vectors 0 6= v ∈ F

ℓ
p with Hamming weight up to β ·d,Hv 6= 0.

When β = ω(log n), it is not difficult to construct a 1-element laconic argument
for the GapMDPβ language with negligible soundness. We use the same principles
we used to construct the 1-query linear PCP for GapMWSPβ . The construction
operates over a group G of prime order p with generator g (which we will model
as a generic group for the security analysis). The construction works as follows:

– Query generation: The verifier samples random vectors c
r← F

k
p r

r← F
k
p

and a scalar s
r← Fp. It also samples a noise vector e ∈ F

k
p, where the

entries of e are either 0 or uniform over Fp. The density of e is chosen to
balance the completeness and soundness requirements. The verifier computes
zT = rTH + scT + eT ∈ F

k
p. The query is the pair (c, gz) where gz denotes

the vector of group elements gz1 , . . . , gzk , and z = (z1, . . . , zk).
– Prover’s response: For an yes instance to the GapMDP problem, the wit-

ness is a vector v ∈ F
k
p such that Hv = 0 and v has low Hamming weight.

On input the query c and gz and the witness v ∈ F
k
p, the prover computes

t = (cTv)−1 and replies with the single group element gt·z
T
v.

– Verification: To verify the proof π, the verifier checks that π = gs.

We now informally describe the completeness and soundness analysis:

– Completeness: For a yes instance, the witness v satisfies Hv = 0 and
moreover v has low Hamming weight. If the noise vector e is sufficiently
sparse, then with high probability, eTv = 0. Thus,

zTv = rTHv + scTv + eTv = scTv.

In this case, gt·z
T
v = gs since t = (cTv)−1. Note that c is uniform (and inde-

pendent of v), so the quantity cTv is nonzero with overwhelming probability
(and thus, invertible).

– Soundness: For the soundness analysis, we model the group as a generic
group. Since the prover only has an encoding gz of z ∈ F

k
p, in the generic

group model, the only components that it can construct are of the form

gz
T
α+β for some choice of α ∈ F

k
p and β ∈ Fp. The prover succeeds if it is

able to find α, β such that zTα+β = rTHα+scTα+eTα = s. We consider
two possibilities:

• If the Hamming weight of α is less than β · d and we have a no in-
stance, then Hα 6= 0. In this case, over the randomness of r, the value
of rTHα 6= 0 is uniform over Fp.

• Alternatively, if α has Hamming weight larger than β · d, and e is suf-
ficiently dense, then with overwhelming probability, there is some com-
ponent ei such that eiαi 6= 0, and so eTα 6= 0. In this case, the value of
eTα is uniform over Fp.

15

This means that for any choice of α, β that the prover chooses, with over-
whelming probability, either rTHα or eTα is uniform over Fp (and indepen-
dent of s). The probability that zTα+ β = s is negligible.

Observe that in the above analysis, we require e to be sufficiently sparse for
completeness to hold with high probability and sufficiently dense for soundness to
hold with overwhelming probability. For this reason, we require that the gap β be
large enough so as to satisfy both constraints. In particular, taking β = ω(log n)
suffices for our analysis. We provide the full description of the scheme and its
analysis in Section 5.1.

To obtain a 1-element laconic argument for NP (and correspondingly, a
witness encryption scheme for all of NP), we need to assume that the above
GapMDPβ problem is NP-hard for some choice of β = ω(log n) and Fp is a fi-
nite field of super-polynomial size. More precisely, we require that there is a
deterministic polynomial-time Karp-Levin reduction from NP to GapMDPβ . Ex-
isting hardness of approximation results show that over polynomial-size fields,
the GapMDP problem is NP-hard for constant approximation factors β = O(1),
and NP-hard under a deterministic quasi-polynomial time reduction for “almost-
polynomial” approximation factors β = 2log

1−ε(n). Thus, proving our hypothesis
(Hypothesis 5.2) requires strengthening existing hardness results in two direc-
tions: (1) arguing NP-hardness for some β = ω(log n) under a polynomial-time
reduction; and (2) extending the hardness result to exponential-size prime order
fields. As mentioned above, while our existing techniques do not seem sufficient,
there are also no known barriers to showing the hardness of approximation results
we require [Kho20]. If our hypothesis is true, then we obtain an unconditional
construction of witness encryption for NP in the generic group model.

2 Preliminaries

For a positive integer n ∈ N, we write [n] to denote the set {1, . . . , n}. We write
F to denote a finite field. We will use bold lowercase letters (e.g., v,w) to denote
vectors and bold uppercase letters (e.g., A,B) to denote matrices. For a vector
v ∈ F

n, wt(v) denotes the Hamming weight of v (i.e., the number of nonzero
entries in v). For a matrix A ∈ F

n×m, we write dist(A) to denote the minimum
distance of the code generated by A. (i.e., the minimum Hamming weight of a
nonzero codeword generated by A).

We write λ to denote a security parameter. We say that a function f is neg-
ligible in λ, denoted negl(λ) if f(λ) = o(1/λc) for all c ∈ N. We say an event
happens with negligible probability if the probability of the event happening is
negligible, and that it happens with overwhelming probability if its complement
occurs with overwhelming probability. We say an algorithm is efficient if it runs
in probabilistic polynomial time in the length of its input. We write poly(λ) to
denote a function that is bounded by a fixed polynomial in λ and polylog(λ) to
denote a function that is bounded by poly(log λ). We say that two families of
distributions D1 = {D1,λ}λ∈N and D2 = {D2,λ}λ∈N are computationally indis-

tinguishable (denoted D1
c≈ D2) if no efficient adversary can distinguish samples

16

from D1 and D2 except with negligible probability. We say that D1 and D2 are

statistically indistinguishable (denoted D1
s≈ D2) if the statistical distance be-

tween D1 and D2 is negligible. We review additional preliminaries in the full
version of this paper.

Arithmetic circuit satisfiability. A central part of this work is constructing suc-
cinct argument systems for the language of Boolean circuit satisfiability. When
describing some of our constructions however, it will oftentimes be more nat-
ural to consider the more general language of arithmetic circuit satisfiability
which we recall formally below. Throughout this paper, an arithmetic circuit
C : Fn × F

h → F
ℓ over a finite field F consists of a collection of addition gates

with unbounded fan-in and multiplication gates with fan-in 2. Both types of
gates can have unbounded fan-out. As noted in [BCI+13], Boolean circuit satis-
fiability can be reduced to arithmetic circuit satisfiability over any finite field F

with constant overhead.

Definition 2.1 (Arithmetic Circuit Satisfiability). Let F be a finite field.
For an arithmetic circuit C : Fn×Fh → F

t over F, the arithmetic circuit satisfia-
bility problem is defined by the relation RC = {(x,w) ∈ F

n×Fh : C(x,w) = 0t}.
We write LC to denote the corresponding language. For a family of arithmetic
circuits C = {Cℓ : F

n(ℓ) × F
h(ℓ) → F

t(ℓ)}ℓ∈N, we write RC and LC to denote
the infinite relation RC =

⋃
ℓ∈N
RCℓ

and infinite language LC =
⋃

ℓ∈N
LCℓ

. The
special case of Boolean circuit satisfiability is the problem of arithmetic circuit
satisfiability over the binary field F = F2 (in this case, the output of C can be
taken to be a single bit (i.e., ℓ = 1) without loss of generality).

2.1 Linear PCPs

We begin by recalling the definition of linear PCPs (LPCP) from [BCI+13]. Our
definition combines features from a “fully linear PCP” introduced in [BBC+19]
with the traditional notion of a linear PCP. First, recall that in a fully linear
PCP, the verifier does not have direct access to the statement x ∈ F

n and
instead is given linear query access to the vector [π,x] that includes the proof
π together with the statement x. To simplify the definition (and still capture
existing constructions of linear PCPs), in a k-query linear PCP, we allow the
verifier to make a single “free” linear query to the statement x and up to k linear
queries to the proof vector π. We give our definition below:

Definition 2.2 (Linear PCP [BCI+13, BBC+19, adapted]). Let R : Fn×
F
h → {0, 1} be a binary relation8 (with associated language L) over a finite field

F. A k-query linear PCP for R with query length ℓ and soundness error ε is a
tuple of algorithms ΠLPCP = (QLPCP,PLPCP,DLPCP) with the following properties:

8We can also define integer linear PCPs for an (infinite) family of relations R =⋃
κ∈N

Rκ. In this case, the inputs to the query-generation and proving algo-
rithms would additionally take the relation index 1κ as input, and the parameters
n, h, k, ℓ, B, ε can all be functions of κ.

17

– The verifier’s query algorithm QLPCP outputs a query qinp ∈ F
n, a query

matrix Q ∈ F
ℓ×k, and a verification state st. We can also consider an input-

dependent linear PCP where the query algorithm also takes as input a state-
ment x ∈ F

n.
– The prover algorithm PLPCP takes a statement x ∈ F

n and a witness w ∈ F
h

as input and outputs a proof π ∈ F
ℓ.

– The verifier’s decision algorithm DLPCP takes as input the verification state
st, an input-dependent response ainp ∈ F, and a vector of responses a ∈ F

k,
and outputs a bit b ∈ {0, 1}.

In addition, ΠLPCP should satisfy the following properties:

– Completeness: For all x ∈ F
n and w ∈ F

h where R(x,w) = 1,

Pr[DLPCP(st,q
T
inpx,Q

T
π) = 1 | (st,qinp,Q)← QLPCP,π ← PLPCP(x,w)] = 1

– Soundness: For every x /∈ L and every π∗ ∈ F
ℓ, δ∗ ∈ F

k,

Pr[DLPCP(st,q
T
inpx,Q

T
π

∗ + δ
∗) = 1 | (st,qinp,Q)← QLPCP] ≤ ε.

– δ-Honest-verifier zero-knowledge (δ-HVZK): There exists an efficient
simulator SLPCP such that for all x ∈ L, the following distributions are δ-
close (i.e., their statistical distance is at most δ):

{SLPCP(x)} and
{
(st,qinp,Q,qT

inpx,Q
T
π)

∣∣∣∣
(st,qinp,Q)← QLPCP;
π ← PLPCP(x,w)

}
.

If these two distributions are identically distributed, we say that LPCP sat-
isfies perfect honest-verifier zero-knowledge.9

In the full version of this paper, we recall additional properties on linear PCPs.

3 1-Query Linear PCPs via Packing

In this section, we begin by introducing the notion of a bounded linear PCP
over the finite field Fp. Throughout this section, we will view elements x ∈ Fp as
both field elements over Fp as well as integers in the interval [−p/2, p/2]. We first
show in Construction 3.2 how to pack k-query bounded linear PCPs into a 1-
query linear PCP. In the full version of this paper, we describe how to construct
a 2-query linear PCP based on the Hadamard linear PCP [ALM+98, IKO07].
In conjunction with our query-packing transformation, we obtain 1-query linear

9We can consider a stronger notion of zero-knowledge where the simulator does not have
access to the statement x. This is the setting considered in fully linear PCPs [BBC+19]
and has applications to constructing proofs on committed values or secret-shared val-
ues. This stronger notion can also be relevant in our setting where a verifier is check-
ing proofs from multiple provers (who may each hold a secret share of a distributed
database), and the goal is to minimize proof size or verifier complexity.

18

PCPs for NP. Then, by invoking the compiler from [BCI+13] with the ElGamal
encryption scheme, we obtain a SNARG where the proof consists of a single
ElGamal ciphertext (i.e., two group elements). Then, in Sections 3.2 and 3.3, we
show how to optimize the concrete efficiency of our ElGamal-based SNARG (by
leveraging structural properties of our 1-query linear PCP).

Definition 3.1 (Bounded Linear PCP). A k-query linear PCP ΠLPCP =
(QLPCP,PLPCP,DLPCP) for a relation R : Fn

p × F
h
p → {0, 1} over a finite field

Fp is bounded with respect to bound functions b1, . . . , bk : N → N if QLPCP and
PLPCP take as input an additional bound parameter τ ∈ N and for any x,w where
R(x,w) = 1, we have for all i ∈ [k],

Pr[qT
i π ∈ [−bi(τ), bi(τ)] | (st,qinp,Q)← QLPCP(τ),π ← PLPCP(τ,x,w)] = 1,

(3.1)
where qi denotes the i

th column on Q and the inner product is computed over the
integers. We say that ΠLPCP is bounded with respect to bound functions b1, . . . , bk
with probability ε if Eq. (3.1) holds with probability ε. Moreover, when defining
δ-HVZK for bounded linear PCPs, we additionally provide the bound parameter
τ as input to QLPCP and PLPCP in the real distribution and the simulator SLPCP
in the simulated distribution (in addition to the input x). In this case, we also
allow the bound function to depend on both the bound parameter τ as well as the
zero-knowledge parameter δ.

We refer to the full version of this paper for the definition of strong soundness
as it pertains to bounded linear PCPs.

Construction 3.2 (Bounded Linear PCP Packing). Let Π ′
LPCP = (Q′

LPCP,
P ′
LPCP,D′

LPCP) be a k-query bounded LPCP for a binary relation R : Fn
p × F

h
p →

{0, 1} over Fp with bound functions b′1, . . . , b
′
k : N → N and soundness error ε′.

We will assume that D′
LPCP strictly enforces the bound on the responses (namely,

given a set of responses a1, . . . , ak, D′
LPCP accepts only if ai ∈ [−b′i(τ), b′i(τ)] for

each i ∈ [k]; see the full version of this paper for more discussion). We construct
a 1-query bounded LPCP ΠLPCP = (QLPCP,PLPCP,DLPCP) as follows:

– QLPCP(τ): On input the bound parameter τ , QLPCP proceeds as follows:
1. Run (st′,q′

inp,Q
′)← Q′

LPCP(τ). Set qinp = q′
inp.

2. DefineBmin = mini∈[k] b
′
i(τ),Bmax = maxi∈[k] b

′
i(τ), andBmul =

∏
i∈[k] b

′
i(τ).

Set r1 = 1 and sample r2, . . . , rk
r←
[
4Bmax + 1, Bmul · 2k+2/ε′

]
. Without

loss of generality, we will assume that Bmin = b′k(τ).
3. Compute st ← (st′, b′1(τ), . . . , b

′
k(τ), r1, . . . , rk), and compute the query

vector q ∈ F
ℓ
p as

q =
∑

i∈[k]

q′
i

(
∏

j∈[i]

rj

)
∈ F

ℓ
p,

where q′
1, . . . ,q

′
k ∈ Z

ℓ denote the k columns of Q′.
Output (st,qinp,q).

19

– PLPCP(τ,x,w): On input a statement x ∈ F
n
p and a witness w ∈ F

h
p , output

the proof π ← PLPCP(τ,x,w).
– DLPCP(st, ainp, a): On input the state st = (st′, b′1, . . . , b

′
k, r1, . . . , rk), an input-

dependent response ainp ∈ Fp, and a response a ∈ Fp, compute a′1, . . . , a
′
k ∈

Fp so that a =
∑

i∈[k] a
′
i

∏
j∈[i] rj and each a′i satisfies a

′
i ∈ [−b′i, b′i]. This can

be done as follows:

• For each i = k, k − 1, . . . , 1, compute a′i ← ⌊a/
∏

j∈[i] rj⌋ and update

a ← a − a′i ·
∏

j∈[i] rj , where all of these operations happen over the

integers (namely, the algorithm interprets the values a and a′1, . . . , a
′
k as

integers in the interval [−p/2, p/2]).
If the above procedure does not produce a′1, . . . , a

′
k ∈ Fp satisfying the above

requirements, output 0. Otherwise, output D′
LPCP(st

′, ainp, (a
′
1, . . . , a

′
k)).

We argue completeness, soundness, and zero-knowledge of Construction 3.2 in
the full version of this paper and just state the main corollary below.

Corollary 3.3 (Linear PCP Packing). Let Π ′
LPCP be a k-query bounded

LPCP over Fp for a binary relation R with bound functions b′1, . . . , b
′
k, soundness

error (resp., strong soundness error) ε′, and which satisfies δ-HVZK. Let B′
min =

mini∈[k] b
′
i, B

′
mul =

∏
i∈[k] b

′
i, and B = 2B′

min

(
B′

mul2
k+2/ε

)k−1
. If p > 2B, then

there exists a 1-query bounded LPCP over Fp for R with bound B, soundness
error (resp., strong soundness error) (k + 1)/2ε′, and which satisfies δ-HVZK.

3.1 Constructing 1-Query Bounded Linear PCPs

As noted in [BCI+13], a simple extension of the Hadamard PCP from [ALM+98,
IKO07] to arbitrary finite fields F yields a 3-query linear PCP for arithmetic cir-
cuit satisfiability over F. In the full version of this paper, we note that a simple
adaptation of the construction yields a 2-query linear PCP. Then, applying our
linear PCP packing construction (Corollary 3.3), we obtain the following con-
struction of a 1-query linear PCP:

Corollary 3.4 (1-Query Bounded LPCP). Let C : {0, 1}n × {0, 1}h →
{0, 1} be a Boolean circuit of size s, and let Fp be a finite field. Let τ ∈ N

be a bound parameter and δ > 0 be a zero-knowledge parameter. There exist
1-query bounded linear PCPs over Fp for RC with the following properties:

– Perfect completeness, strong soundness error 3/τ , query length (s2 + 3s)/2,
and bound function b(τ) = 4s4τ5/3, provided that p > 2b(τ); and

– Perfect completeness, soundness error 3/τ , query length (s2 + 3s)/2, δ-
honest-verifier zero knowledge, and bound function b(τ, δ) = 64τ(sτ/2 +
2τ
√
s/2 ln(4/δ)/δ)4/3, provided that p > 2b(τ, δ).

Additionally, the query-generation algorithm QLPCP and the prover algorithm
PLPCP runs in time O(s2) · polylog(p). The verifier’s decision algorithm DLPCP

runs in time polylog(p).

20

3.2 SNARGs based on ElGamal

In this section, we describe how to efficiently compile our 1-query bounded lin-
ear PCP from Corollary 3.4 to obtain a designated-verifier SNARG in the pre-
processing model where the proof size consists of 2 group elements and where
the verification complexity is sublinear in the cost of the classic NP verifier.
While it is possible to directly invoke the [BCI+13] compiler on our 1-query
bounded linear PCP together with ElGamal encryption, the verification com-
plexity of the resulting scheme is quadratic in the size of the classic NP veri-
fier. This is because the additively-homomorphic version of ElGamal encryption
scheme encodes the messages in the exponent, and decryption requires solving
a discrete log. When the responses are bounded in an interval of size B, this
can be done in time O(

√
B) using generic algorithms (e.g., [Pol78]). While a

bounded linear PCP seems like a natural choice to use in conjunction with El-
Gamal, the bounds in Corollary 3.4 scale with s4, where s is the circuit size
of the classic NP verifier. Instantiating with ElGamal then yields an unaccept-
able verification complexity that is quadratic in the circuit size. In this section,
we will leverage the structure of our packed 2-query bounded linear PCP to ob-
tain an asymptotically-faster (worst-case verification complexity that scales with

Õ(
√
s)) and concretely-efficient designated-verifier SNARG based on ElGamal.

Compared with a direct instantiation of the [BCI+13] compiler with ElGamal
encryption, our proofs are either 4 times more succinct (2 group elements vs. 8
group elements) or much more concretely efficient (relying on linear PCPs rather
than classic PCPs).

The ElGamal instantiation. Before describing how we optimize the verification
procedure for our ElGamal-based SNARG, we begin with an explicit description
of the construction. We assume a 1-query bounded linear PCP, in which case we
obtain a direct construction from any linear-only encryption scheme:

Construction 3.5 (SNARG based on ElGamal). Let C : {0, 1}n×{0, 1}h →
{0, 1} be a Boolean circuit of size s. Let GroupGen be a prime-order group gen-
erator that outputs a group G of prime order p. Let ΠLPCP = (QLPCP,PLPCP,
DLPCP) be a 1-query bounded linear PCP with bound B = B(τ) and bound
parameter τ for the relation RC over Fp. We construct a SNARG ΠSNARG =
(SSNARG,PSNARG,VSNARG)

– SSNARG(1λ): On input the security parameter λ, the setup algorithm sam-
ples a group description (G, p, g) ← GroupGen(1λ) and a linear PCP query
(st′,qinp,q) ← QLPCP(τ) ∈ F

ℓ
p. The setup algorithm samples a secret key

α
r← Fp, and computes the ElGamal public key h ← gα. The setup algo-

rithm samples r
r← F

ℓ
p, and computes the ciphertexts (gr, hrgq), where for a

vector r, we write gr to denote the vector of group elements (gr1 , . . . , grℓ).
The setup algorithm outputs the common reference string crs and verification
state st:

crs =
(
(G, p, g), h, (gr, hrgq), τ

)
and st = (st′, α).

21

– PSNARG(crs, x, w): On input a common reference string crs =
(
(G, p, g), h,

(gr, gs), τ
)
, a statement x ∈ {0, 1}ℓ, and a witness w ∈ {0, 1}h, the prover

algorithm computes a proof π ← PLPCP(τ, x, w) ∈ F
ℓ
p. It computes the proof

as π = (gr
T
π, gs

T
π).

– VSNARG(st, x, π): On input the verification state st = (st′,qinp, α), the state-
ment x ∈ {0, 1}n, and a proof π = (g1, g2), the verifier computes h′ =
g2/g

α
1 , and checks if there exists a ∈ [−B,B] such that h′ = ga. It outputs

DLPCP(st
′,qT

inpx, a).

Assuming that the ElGamal encryption scheme satisfies linear targeted mal-
leability with respect to the target set [−B,B], then Construction 3.5 is a
designated-verifier SNARG in the preprocessing model where the proof size con-
sists of exactly 2 group elements. The bottleneck is the expensive verification
procedure. As stated, the verification algorithm has to compute the discrete log
of h′ = ga where a is the linear PCP response. This can be computed in time
Õ(
√
B), which for the linear PCP from Corollary 3.4, is quadratic in the circuit

size s.

Optimizing the verification procedure. We now describe how to more efficiently
implement the verification procedure in Construction 3.5 to obtain a SNARG
whose worst-case verification complexity is O(s). Moreover, if we allow for a
negligible completeness error (as opposed to perfect completeness), we give a

procedure whose worst-case verification complexity is Õ(
√
s). Our optimization

will rely on specific properties of the linear PCP from Corollary 3.4. Namely,
the 1-query linear PCP from Corollary 3.4 was obtained by packing together a
2-query linear PCP.

– The 2-query linear PCP has the property that the verifier accepts a response
(a1, a2) ∈ F

2
p only if a21+ a2 = ainp+uC , where ainp, uC ∈ Fp are scalars that

are known to the verifier.
– If q1,q2 ∈ F

ℓ
p are the two queries the verifier makes, then the packed query

in Construction 3.2 satisfies q = q1 + r · q2 for some r ∈ Fp known to the
verifier. This means that the honest prover’s response satisfies a = qTπ =
qT
1π + r · qT

2π = a1 + r · a2.
– Finally, for an accepting proof, the first response a1 satisfies a1 ∈ [−b1(τ), b1(τ)] =

[−sτ/2, sτ/2].

Equivalently, this means the linear PCP verifier accepts only if there exists a1 ∈
[−b1(τ), b1(τ)] such that the following two relations hold:

a2 = ainp + uC − a21 and a = a1 + r · a2,

or equivalently, if there exists a1 ∈ [−b1(τ), b1(τ)] such that

a = a1 + r · (ainp + uC − a21).

In the SNARG from Construction 3.5, the verifier first computes ga. Now, instead
of recovering a by solving discrete log, the verifier instead checks whether there

22

exists a1 ∈ [−b1(τ), b1(τ)] where

ga = ga1+r(ainp+uC−a2

1
). (3.2)

This can be done by performing a brute force search over all of the possible
2b1(τ) values for a1 and seeing if Eq. (3.2) holds. We can also rewrite Eq. (3.2)
as checking whether there exists a1 where

ga · g−r(ainp+uC) = ga1−ra2

1 . (3.3)

Observe now that the right-hand side of the expression depends only on the value
of a1 and r, and in particular, is independent of the statement. Since r is sampled
by the setup algorithm SSNARG, the verifier can actually precompute a table of
values ga1−ra2

1 for each possible value of a1. Then, to verify a proof π = (g1, g2),
the verifier computes u = gag−r(ainp+uC), which requires a constant number of
group operations, and finally, checks to see whether u is contained in the table or
not. This yields a substantially faster verification procedure. Even without this
optimization, we obtain a SNARG where the verification complexity is O(s). We
summarize this in the following corollary:

Corollary 3.6 (SNARG from ElGamal with Perfect Completeness).
Let C : {0, 1}n × {0, 1}h → {0, 1} be a Boolean circuit of size s. Let ε > 0 be a
soundness parameter and δ > 0 be a zero-knowledge parameter. Assuming the
ElGamal encryption scheme (over a prime order group G of order p) satisfies
linear targeted malleability with respect to a target message space [−B,B] for
B = poly(s, 1/ε, 1/δ), there exist a designated-verifier SNARGs for RC with
perfect completeness, non-adaptive soundness error ε, and proofs of size 2 log|G|.
The CRS has size O(s2). The setup algorithm and prover run in time O(s2) and
the verifier runs in time O(s/ε). Moreover, the SNARG can be extended to satisfy
δ-HVZK. In this case, the verifier runs in time O(

√
s/ε · (√s +

√
log(1/δ)/δ));

the setup and prover complexity remain unchanged. All of the running times are
up to polylog(p) factors.

Sublinear verification. We can further reduce the verification complexity by
having the verifier only accept proofs where the first response a1 is contained
in a much shorter interval. In the full version of this paper, we show that
with overwhelming probability, a1 ∈ [−b′1(τ), b′1(τ)] where b′1(τ) = Õ(τ

√
s).

We now modify the verification procedure VSNARG to only accept if there ex-
ists a1 ∈ [−b′1(τ), b′1(τ)] such that Eq. (3.3) holds. Since the subset of proofs
the verifier accepts is now a strict subset of the proofs it accepted in the original
scheme, (single-theorem) soundness is preserved. The trade-off is that the verifier
may now reject some honestly-generated proofs, but this can only happen with
negligible probability over the verifier’s randomness. This yields the following
theorem:

Corollary 3.7 (SNARG from ElGamal with Sublinear Verification).
Let C : {0, 1}n × {0, 1}h → {0, 1} be a Boolean circuit of size s. Let ε > 0 be a

23

soundness parameter and δ > 0 be a zero-knowledge parameter. Assuming the
ElGamal encryption scheme (over a prime order group G of order p) satisfies lin-
ear targeted malleability with respect to a target message space [−B,B] for B =
poly(s, 1/ε, 1/δ), there exists a designated-verifier SNARG for RC with statisti-
cal completeness and non-adaptive soundness error ε, and proofs of size 2 log|G|.
The CRS has size O(s2). The setup algorithm and prover run in time O(s2) and

the verifier runs in time Õ(
√
s/ε). Moreover, the SNARG can be extended to

satisfy δ-HVZK. In this case, the verifier runs in time Õ(
√
s log(1/δ)/(δε)); the

setup and prover complexity remain unchanged. All of the running times are up
to polylog(p) factors.

A preprocessing variant. As mentioned above, the verification relation in Eq. (3.3)
is very amenable to preprocessing. Namely, the verifier can perform a one-time
setup and precompute all of the accepting values of ga1−ra2

1 and store them in
a table. Applying the sublinear verification approach described above, this will
only require Õ(

√
s) space when verifying circuits of size s. In the online phase,

to check a proof, the verifier needs to perform a single ElGamal decryption,
followed by computing the left-hand side of Eq. (3.3), and finally, a single ta-
ble lookup. The overall computation comes out to just 2 exponentiations and 2
multiplications, followed by the table lookup. This yields the following corollary:

Corollary 3.8 (SNARG from ElGamal with Preprocessing). Let C : {0, 1}n×
{0, 1}h → {0, 1} be a Boolean circuit of size s. Let ε > 0 be a soundness parame-
ter and δ > 0 be a zero-knowledge parameter. Assuming the ElGamal encryption
scheme (over a prime order group G of order p) satisfies linear targeted mal-
leability with respect to a target message space [−B,B] for B = poly(s, 1/ε, 1/δ),
there exists a designated-verifier SNARG for RC with statistical completeness,
non-adaptive soundness error ε, and proofs of size 2 log|G|. The CRS has size

O(s2). The setup algorithm runs in time Õ(s2 +
√
s/ε) and outputs a table T of

size Õ(
√
s/ε). The prover runs in time O(s2) and the verifier runs in time Õ(1)

given access to the precomputed table T. If we extend the SNARG to provide
δ-HVZK, the setup algorithm now runs in time O(s2 +

√
s log(1/δ)/(δε)) and

outputs a table T of size O(
√
s log(1/δ)/(δε)). Given access to the precomputed

table, the verifier’s runtime is Õ(1). All of the running times and table sizes are
up to polylog(p) factors.

Remark 3.9 (Arguments of Knowledge). The SNARG constructions in Corollar-
ies 3.6 to 3.8 are all arguments of knowledge (i.e., “SNARKs”) since the under-
lying linear PCPs provide knowledge soundness and Construction 3.2 preserves
the knowledge soundness of the underlying linear PCP.

3.3 Concrete Efficiency of the ElGamal-Based SNARG

In the full version of this paper, we provide an overview of our methodology for
estimating the concrete efficient of our ElGamal-based SNARG. A summary of
the main results is provided in Table 2.

24

4 1-Query Linear PCP from Hardness of Approximation

In the full version of this paper, we show how to construct a 1-query instance-
dependent linear PCP with a linear decision procedure and negligible soundness
error. Combined with the compiler from [BCI+13], and assuming linear targeted
malleability of ElGamal encryption, we obtain the first laconic argument with
negligible soundness error where the proof consists of a single ElGamal cipher-
text. Note that we do not obtain a SNARG because the verifier’s first message
(i.e., the verifier’s query) depends on the statement. We refer to Section 1.2 for
a high-level overview of the construction.

5 1-Element Laconic Arguments and Witness Encryption

In the full version of this paper, we show that any laconic argument system for
an NP language L (with negligible soundness error) where the proof consists
of a single group element (i.e., a “1-element laconic argument”) and where the
verification algorithm can be modeled as a “generic” algorithm implies a witness
encryption scheme for L. Note that since the prover is restricted to sending
a single group element, this effectively restricts the prover to sending at most
one message in the protocol. Thus, it suffices to just consider 2-message laconic
arguments here. Our construction of witness encryption proceeds in two steps.
We first show that any laconic argument satisfying the above properties must
be predictable [FNV17]. We then invoke the Faonio et al. [FNV17] compiler on
the predictable argument to obtain a witness encryption scheme.

Next, we show that under a new hypothesis on the hardness of approximat-
ing the minimum distance of a linear code [DMS99] (Hypothesis 5.2), we can
construct a laconic element for NP where the proof consists of a single group
element in the generic group model. Thus, under our hypothesis, we obtain a
witness encryption scheme for NP in the generic group model.

5.1 1-Element Laconic Argument from Hardness of Approximation

In this section, we show that under a hardness of approximation hypothesis for
the minimum distance problem [DMS99], we can construct a 1-element laconic
argument for general NP languages. We begin by recalling the minimum distance
problem and then stating our hardness of approximation hypothesis.

Definition 5.1 (Gap Minimum Distance Problem (GapMDP) [DMS99,
Definition 1]). For an approximation factor β, an instance of GapMDPβ is a

pair (A, d) where A ∈ F
n×k for some finite field F and d ∈ N such that

– (A, d) is a yes instance if dist(A) ≤ d.
– (A, d) is a no instance if dist(A) ≥ β · d.

Here, dist(A) is the minimum distance (under the Hamming metric) of the code
generated by A. A witness for a yes instance (A, d) is a nonzero codeword
0 6= v ∈ F

k (in the code generated by A) where wt(v) ≤ d.

25

Hypothesis 5.2 (Hardness of Approximation for GapMDP). For some
β = ω(log n), the GapMDPβ problem is NP-hard for any choice of finite field F

where |F| = 2O(n). Specifically, there exists a deterministic Karp-Levin reduction
from SAT to GapMDPβ , where the reduction algorithm takes a target field F as
an explicit input and outputs an instance (A, d) over F in time poly(n, log|F|).

Existing hardness results on GapMDP. Dumer et al. [DMS99] showed that the
GapMDP was NP-hard for any constant approximation factor β = O(1) (over
any polynomial-size field) via a randomized reduction. Subsequently, Cheng and
Wan [CW09] as well as Austrin and Khot [AK14] gave a deterministic re-
duction for the same parameter regimes. The latter results additionally give a
deterministic quasi-polynomial time reduction from NP to the GapMDPβ for any

β = 2log
1−ε(n) (i.e., unless NP ⊆ DTIME(2polylog(n)), there is no polynomial-time

algorithm for GapMDPβ). In our setting, we need to strengthen the existing
hardness of approximation results in two different directions: (1) Hypothesis 5.2
requires a deterministic polynomial time reduction to GapMDP while the exist-
ing reductions in the super-constant regime are all quasi-polynomial; and (2) we
require that the reduction applies to large prime characteristic fields (i.e., fields
that are super-polynomial in the instance size). While existing reductions are
agnostic about the choice of the field, the running time of existing reductions
scale polynomially in the characteristic of the field, so they do not directly gen-
eralize to super-polynomial size fields.10 While existing techniques do not suffice
for proving Hypothesis 5.2, there are no known barriers to doing so [Kho20].

Construction 5.3 (Laconic Argument for GapMDP). Let λ be a security
parameter, ε > 0 be a completeness parameter, and β > 0 be the approximation
factor. Let GroupGen be a prime-order group generator, and let p = p(λ) be the
order of the group output by GroupGen. We construct a two-message laconic
argument ΠLA = (QLA,PLA,VLA) for GapMDPβ (for instances over Fp):

– QLA(1
λ, (A, d)): On input the security parameter λ and an GapMDPβ in-

stance (A, d) over Fp, the query algorithm samples (G, p, g)← GroupGen(1λ).
Let H ∈ F

ℓ×k
p be the parity check matrix for the code generated by A. Then

the verifier constructs the following components:

• Sample a random vector e ∈ F
k
p where each component ei = 0 with

probability 1− ε/d and ei
r← Fp otherwise.

• Sample c
r← F

k
p, r

r← F
ℓ
p, s

r← Fp and compute zT = rTH+scT+eT ∈ F
k
p.

The algorithm outputs ((G, p, g), c, gz) as its query and st = gs as its state.
Here, we write gz to denote the vector of group elements (gz1 , . . . , gzk), where
z1, . . . , zk are the components of z.

– PLA(q, x, w): On input a query q = ((G, p, g), c, gz), a GapMDP instance
(A, d) and a witness v ∈ F

k
p, the prover algorithm does the following:

10We formulate the hypothesis for |F| = 2O(n), although any field of super-polynomial
size would also suffice.

26

• If cTv = 0, then the prover aborts with output ⊥. Otherwise, let t =
(cTv)−1.

• Output the proof π = gt·z
T
v (which can be computed from t, v, and gz).

– VLA(st, π): On input the verification state st ∈ G and a proof π ∈ G, output
1 if st = π, and 0 otherwise.

Completeness and soundness analysis. We now state the completeness and sound-
ness theorems for Construction 5.3 as well as the resulting implication to 1-
element laconic arguments and witness encryption for NP in the generic group
model. We defer the completeness and soundness proofs to the full version of
this paper.

Theorem 5.4 (Completeness). Construction 5.3 has completeness error ε.

Theorem 5.5 (Soundness). If εβ = ω(log n) and GroupGen is modeled as a
generic group, then Construction 5.3 has soundness error negl(λ).

Corollary 5.6 (1-Element Laconic Argument for NP). Let λ be a security
parameter. Under Hypothesis 5.2, there exists a predictable laconic argument for
NP in the generic group model with completeness error o(1) and soundness error
negl(λ) and where the prover’s message consists of a single group element.

Proof. Let β(λ) = f(λ) log λ where f(λ) = ω(1) for which Hypothesis 5.2 holds.
Take ε = 1/

√
f(λ) = o(1). By instantiating Construction 5.3 with this choice

of β, ε and appealing to Theorems 5.4 and 5.5, we obtain a laconic argument
for GapMDPβ with completeness error ε = o(1) and soundness error negl(λ). In
addition, Construction 5.3 is predictable by construction. Finally, by Hypothe-
sis 5.2, there exists a deterministic polynomial-time Karp-Levin reduction from
NP to GapMDPβ , and so we can use our laconic argument for GapMDPβ to
obtain a laconic argument for any NP language.

Corollary 5.7 (Hypothetical Witness Encryption for NP in the Generic
Group Model). Under Hypothesis 5.2, there exists a witness encryption scheme
for NP in the generic group model.

Proof. Follows by instantiating the general compiler from [FNV17] with the
predictable laconic argument from Corollary 5.6. We provide more details in the
full version of this paper.

Acknowledgments

We thank Henry Corrigan-Gibbs, Subhash Khot, and Sam Kim for insightful
discussions and pointers. We thank the anonymous reviewers for helpful feedback
on the presentation.

27

References

AK14. Per Austrin and Subhash Khot. A simple deterministic reduction for the
gap minimum distance of code problem. IEEE Trans. Inf. Theory, 60(10),
2014.

AL07. Yonatan Aumann and Yehuda Lindell. Security against covert adversaries:
Efficient protocols for realistic adversaries. In TCC, 2007.

ALM+98. Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof verification and the hardness of approximation problems.
J. ACM, 45(3), 1998.

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Gregory Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In IEEE SP, 2018.

BBC+19. Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval
Ishai. Zero-knowledge proofs on secret-shared data via fully linear PCPs.
In CRYPTO, 2019.

BBFR15. Michael Backes, Manuel Barbosa, Dario Fiore, and Raphael M. Reischuk.
ADSNARK: nearly practical and privacy-preserving proofs on authenti-
cated data. In IEEE SP, 2015.

BBHR19. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scal-
able zero knowledge with no trusted setup. In CRYPTO, 2019.

BC12. Nir Bitansky and Alessandro Chiesa. Succinct arguments from multi-
prover interactive proofs and their efficiency benefits. In CRYPTO, 2012.

BCC88. Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure
proofs of knowledge. J. Comput. Syst. Sci., 37(2), 1988.

BCC+16. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and
Christophe Petit. Efficient zero-knowledge arguments for arithmetic cir-
cuits in the discrete log setting. In EUROCRYPT, 2016.

BCC+17. Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia
Lin, Aviad Rubinstein, and Eran Tromer. The hunting of the SNARK. J.
Cryptology, 30(4), 2017.

BCCT12. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From
extractable collision resistance to succinct non-interactive arguments of
knowledge, and back again. In ITCS, 2012.

BCG+13. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and
Madars Virza. SNARKs for C: verifying program executions succinctly
and in zero knowledge. In CRYPTO, 2013.

BCG+14. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized
anonymous payments from bitcoin. In IEEE SP, 2014.

BCI+13. Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer
Paneth. Succinct non-interactive arguments via linear interactive proofs.
In TCC, 2013.

BDRV18. Itay Berman, Akshay Degwekar, Ron D. Rothblum, and Prashant Nalini
Vasudevan. From laconic zero-knowledge to public-key cryptography -
extended abstract. In CRYPTO, 2018.

Ber06. Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In
PKC, 2006.

BHZ87. Ravi B. Boppana, Johan H̊astad, and Stathis Zachos. Does co-NP have
short interactive proofs? Inf. Process. Lett., 25(2), 1987.

28

BIJ+20. James Bartusek, Yuval Ishai, Aayush Jain, Fermi Ma, Amit Sahai, and
Mark Zhandry. Affine determinant programs: A framework for obfuscation
and witness encryption. In ITCS, 2020.

BISW17. Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based
SNARGs and their application to more efficient obfuscation. In EURO-
CRYPT, 2017.

BISW18. Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Quasi-optimal
SNARGs via linear multi-prover interactive proofs. In EUROCRYPT,
2018.

BSW12. Dan Boneh, Gil Segev, and Brent Waters. Targeted malleability: homo-
morphic encryption for restricted computations. In ITCS, 2012.

CL08. Giovanni Di Crescenzo and Helger Lipmaa. Succinct NP proofs from an
extractability assumption. In Conference on Computability in Europe,
2008.

CO99. Ran Canetti and Rafail Ostrovsky. Secure computation with honest-
looking parties: What if nobody is truly honest? In STOC, 1999.

CVW18. Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond
permutation branching programs: Proofs, attacks, and candidates. In
CRYPTO, 2018.

CW09. Qi Cheng and Daqing Wan. A deterministic reduction for the gap mini-
mum distance problem: [extended abstract]. In STOC, 2009.

DFGK14. George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss.
Square span programs with applications to succinct NIZK arguments. In
ASIACRYPT, 2014.

DMS99. Ilya Dumer, Daniele Micciancio, and Madhu Sudan. Hardness of approx-
imating the minimum distance of a linear code. In FOCS, 1999.

ElG84. Taher ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In CRYPTO, 1984.

FNV17. Antonio Faonio, Jesper Buus Nielsen, and Daniele Venturi. Predictable
arguments of knowledge. In PKC, 2017.

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits. In FOCS, 2013.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct nizks without pcps. In EURO-
CRYPT, 2013.

GGSW13. Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness
encryption and its applications. In STOC, 2013.

GH98. Oded Goldreich and Johan H̊astad. On the complexity of interactive
proofs with bounded communication. Inf. Process. Lett., 67(4), 1998.

GLW14. Craig Gentry, Allison B. Lewko, and Brent Waters. Witness encryption
from instance independent assumptions. In CRYPTO, 2014.

GMR85. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof-systems (extended abstract). In STOC, 1985.

Gol00. Oded Goldreich. Candidate one-way functions based on expander graphs.
Electronic Colloquium on Computational Complexity (ECCC), 7(90),
2000.

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge argu-
ments. In ASIACRYPT, 2010.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In
EUROCRYPT, 2016.

29

GVW01. Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. On interactive
proofs with a laconic prover. In ICALP, 2001.

GW11. Craig Gentry and Daniel Wichs. Separating succinct non-interactive ar-
guments from all falsifiable assumptions. In STOC, 2011.

IKO07. Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments
without short pcps. In CCC, 2007.

Kho20. Subhash Khot. Personal communication, 2020.
Kil92. Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In

STOC, 1992.
KMO89. Joe Kilian, Silvio Micali, and Rafail Ostrovsky. Minimum resource zero-

knowledge proofs. In FOCS, 1989.

KPV12. Subhash Khot, Preyas Popat, and Nisheeth K. Vishnoi. 2log1-ε n hard-
ness for the closest vector problem with preprocessing. In STOC, 2012.

Lip12. Helger Lipmaa. Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In TCC, 2012.

Mic00. Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4),
2000.

Mie08. Thilo Mie. Polylogarithmic two-round argument systems. J. Mathematical
Cryptology, 2(4), 2008.

MMN+16a. Mohammad Mahmoody, Ameer Mohammed, Soheil Nematihaji, Rafael
Pass, and abhi shelat. Lower bounds on assumptions behind indistin-
guishability obfuscation. In TCC, 2016.

MMN+16b. Mohammad Mahmoody, Ameer Mohammed, Soheil Nematihaji, Rafael
Pass, and abhi shelat. A note on black-box complexity of indistinguisha-
bility obfuscation. IACR Cryptol. ePrint Arch., 2016, 2016.

Nec94. V.I. Nechaev. Complexity of a determinate algorithm for the discrete
logarithm. MATHEMATICAL NOTES, 55, 1994.

PHGR13. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical verifiable computation. In IEEE SP, 2013.

Pol78. John M Pollard. Monte carlo methods for index computation (mod p).
Mathematics of computation, 32(143), 1978.

PRV12. Periklis A. Papakonstantinou, Charles Rackoff, and Yevgeniy Vahlis. How
powerful are the DDH hard groups? IACR Cryptol. ePrint Arch., 2012,
2012.

Raz95. Ran Raz. A parallel repetition theorem. In STOC, pages 447–456, 1995.
SCI20. SCIPR Lab. libsnark: a C++ library for zkSNARK proofs. https://

github.com/scipr-lab/libsnark, 2020.
Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems.

In EUROCRYPT, 1997.
Wee05. Hoeteck Wee. On round-efficient argument systems. In ICALP, 2005.

30

